China OEM Kr 10 Needle Track Roller Bearings Cam Follower Bolt Roller Bearing supplier

Product Description

We also can offer following bearings . 
 

Bearing Designation Boundary Dimensions M
Nm
Basic Load Rating Limiting Speed
  With eccentric D d C ra B B1 B2 G G1 M Mn C1 d2 d1 B3 e Dynamic Static As yoke type track rollers
Cw Cow
mm mm min mm N rpm

16 KR16 KRE16 16 6 11 0.15 28 16   M6 8   45) 0.6 12 9 7 0.5 3 3800 3750 3150 3300 22000
KR16PP KRE16PP 16 6 11 0.15 28 16   M6 8   45) 0.6 12 9 7 0.5 3 3800 3750 3150 3300 16000
KRV16 KRVE16 16 6 11 0.15 28 16   M6 8   45) 0.6 12 9 7 0.5 3 6400 8500 4850 6500 8500
KRV16PP KRVE16PP 16 6 11 0.15 28 16   M6 8   45) 0.6 12 9 7 0.5 3 6400 8500 4850 6500 8500
19 KR19 KRE19 19 8 11 0.15 32 20   M8 10   45) 0.6 14 11 9 0.5 8 4250 4600 3500 3900 20000
KR19PP KRE19PP 19 8 11 0.15 32 20   M8 10   45) 0.6 14 11 9 0.5 8 4250 4600 3500 3900 14000
KRV19 KRVE19 19 8 11 0.15 32 20   M8 10   45) 0.6 14 11 9 0.5 8 7300 10800 5500 7900 7000
KRV19PP KRVE19PP 19 8 11 0.15 32 20   M8 10   45) 0.6 14 11 9 0.5 8 7300 10800 5500 7900 7000
22 KR22 KRE22 22 10 12 0.3 36 23   M10x1 12   4 0.6 17 13 10 0.5 15 5700 6500 4450 5200 16000
KR22PP KRE22PP 22 10 12 0.3 36 23   M10x1 12   4 0.6 17 13 10 0.5 15 5700 6500 4450 5200 11000
KRV22 KRVE22 22 10 12 0.3 36 23   M10x1 12   4 0.6 17 13 10 0.5 15 8600 12900 6300 9100 6000
KRV22PP KRVE22PP 22 10 12 0.3 36 23   M10x1 12   4 0.6 17 13 10 0.5 15 8600 12900 6300 9100 6000
26 KR26 KRE26 26 10 12 0.3 36 23   M10x1 12   4 0.6 17 13 10 0.5 15 5700 6500 5100 6200 16000
KR26PP KRE26PP 26 10 12 0.3 36 23   M10x1 12   4 0.6 17 13 10 0.5 15 5700 6500 5100 6200 11000
KRV26 KRVE26 26 10 12 0.3 36 23   M10x1 12   4 0.6 17 13 10 0.5 15 8600 12900 7300 11300 6000
KRV26PP KRVE26PP 26 10 12 0.3 36 23   M10x1 12   4 0.6 17 13 10 0.5 15 8600 12900 7300 11300 6000
30 KR30 KRE30 30 12 14 0.6 40 25 6 M12x1.5 13 3 6 0.6 23 15 11 0.5 22 8100 9700 6800 8400 11000
KR30PP KRE30PP 30 12 14 0.6 40 25 6 M12x1.5 13 3 6 0.6 23 15 11 0.5 22 8100 9700 6800 8400 8300
KRV30 KRVE30 30 12 14 0.6 40 25 6 M12x1.5 13 3 6 0.6 23 15 11 0.5 22 12200 19000 9500 14600 4500
KRV30PP KRVE30PP 30 12 14 0.6 40 25 6 M12x1.5 13 3 6 0.6 23 15 11 0.5 22 12200 19000 9500 14600 4500
32 KR32 KRE32 32 12 14 0.6 40 25 6 M12x1.5 13 3 6 0.6 23 15 11 0.5 22 8100 9700 7100 9000 11000
KR32PP KRE32PP 32 12 14 0.6 40 25 6 M12x1.5 13 3 6 0.6 23 15 11 0.5 22 8100 9700 7100 9000 8300
KRV32 KRVE32 32 12 14 0.6 40 25 6 M12x1.5 13 3 6 0.6 23 15 11 0.5 22 12200 19000 10000 15800 4500
KRV32PP KRVE32PP 32 12 14 0.6 40 25 6 M12x1.5 13 3 6 0.6 23 15 11 0.5 22 12200 19000 10000 15800 4500
35 KR35 KRE35 35 16 18 0.6 52 32.5 8 M16x1.5 17 3 6 0.8 27 20 14 1 58 12900 19000 9700 14100 7000
KR35PP KRE35PP 35 16 18 0.6 52 32.5 8 M16x1.5 17 3 6 0.8 27 20 14 1 58 12900 19000 9700 14100 7000
KRV35 KRVE35 35 16 18 0.6 52 32.5 8 M16x1.5 17 3 6 0.8 27 20 14 1 58 18300 35000 12800 23000 3400
KRV35PP KRVE35PP 35 16 18 0.6 52 32.5 8 M16x1.5 17 3 6 0.8 27 20 14 1 58 18300 35000 12800 23000 3400
NUKR35 NUKRE35 35 16 18 0.6 52 32.5 8 M16x1.5 17 3 6 0.8 21 20 14 1 58 23000 27000 16000 18300 6500
40 KR40 KRE40 40 18 20 1 58 36.5 8 M18x1.5 19 3 6 0.8 32 22 16 1 87 14200 20400 10900 15500 6000
KR40PP KRE40PP 40 18 20 1 58 36.5 8 M18x1.5 19 3 6 0.8 32 22 16 1 87 14200 20400 10900 15500 6000
KRV40 KRVE40 40 18 20 1 58 36.5 8 M18x1.5 19 3 6 0.8 32 22 16 1 87 21000 39500 14800 26500 2900
KRV40PP KRVE40PP 40 18 20 1 58 36.5 8 M18x1.5 19 3 6 0.8 32 22 16 1 87 21000 39500 14800 26500 2900
NUKR40 NUKRE40 40 18 20 1 58 36.5 8 M18x1.5 19 3 6 0.8 23 22 16 1 87 24800 31000 18500 22800 5500
47 KR47 KRE47 47 20 24 1 66 40.5 9 M20x1.5 21 4 8 0.8 37 24 18 1 120 19500 32000 15500 25500 4900
KR47PP KRE47PP 47 20 24 1 66 40.5 9 M20x1.5 21 4 8 0.8 37 24 18 1 120 19500 32000 15500 25500 4900
KRV47 KRVE47 47 20 24 1 66 40.5 9 M20x1.5 21 4 8 0.8 37 24 18 1 120 28000 59000 20600 42000 2600
KRV47PP KRVE47PP 47 20 24 1 66 40.5 9 M20x1.5 21 4 8 0.8 37 24 18 1 120 28000 59000 20600 42000 2600
NUKR47 NUKRE47 47 20 24 1 66 40.5 9 M20x1.5 21 4 8 0.8 37 24 18 1 120 39000 50000 28000 34500 4200
52 KR52 KRE52 52 20 24 1 66 40.5 9 M20x1.5 21 8 4 0.8 37 24 18 1 120 19500 32000 16800 38500 4900
KR52PP KRE52PP 52 20 24 1 66 40.5 9 M20x1.5 21 8 4 0.8 37 24 18 1 120 19500 32000 16800 28500 4900
KRV52 KRVE52 52 20 24 1 66 40.5 9 M20x1.5 21 8 4 0.8 37 24 18 1 120 28000 59000 22500 48000 2600
KRV52PP KRVE52PP 52 20 24 1 66 40.5 9 M20x1.5 21 8 4 0.8 37 24 18 1 120 28000 59000 22500 48000 2600
NUKR52 NUKRE52 52 20 24 1 66 40.5 9 M20x1.5 21 8 4 0.8 31 24 18 1 120 43500 60000 29000 37500 3400
62 KR62 KRE62 62 24 29 1 80 49.5 11 M24x1.5 25 8 4 0.8 44 28 22 1 220 30500 53000 26500 47500 3800
KR62PP KRE62PP 62 24 29 1 80 49.5 11 M24x1.5 25 8 4 0.8 44 28 22 1 220 30500 53000 26500 47500 3800
KRV62 KRVE62 62 24 29 1 80 49.5 11 M24x1.5 25 8 4 0.8 44 28 22 1 220 41500 91000 34000 76000 2200
KRV62PP KRVE62PP 62 24 29 1 80 49.5 11 M24x1.5 25 8 4 0.8 44 28 22 1 220 41500 91000 34000 76000 2200
NUKR62 NUKRE62 62 24 29 1 80 49.5 11 M24x1.5 25 8 4 0.8 38 28 22 1 220 59000

 

 

 

 

Needle bearings are a small cylindrical type of roller bearings which are used to prevent friction between moving surfaces which have low rotational speeds. Needle roller bearings are usually used when space is at a premium as needle bearings are much more compact than ball bearings.This type of bearing is known for its smaller, rigid and more durable design, offering a smaller coefficient of friction, allowing them to transfer motion on rotating surfaces easily.

Product ttrb

 

Pro

 

 

Needle rollers are the load-carrying component of the bearing, and are the 1 common component of all needle roller bearing types. These allow the outer and inner rings to rotate almost friction-free. They are most frequently manufactured from a steel alloy.

 

Raceways (if present) serve to CZPT the rollers within the bearing. These items are commonly manufactured from carbon chromium steel or other alloys to improve hardness, fatigue resistance, and dimensional stability.

 

Bearing cages separate rollers to keep the load evenly distributed around the bearing. They also reduce bearing noise, improve rolling conditions, and prevent sliding. Additionally, they contain rollers within a single assembly. Steel is the most commonly used cage material in needle roller bearings. Plastic cages can be used where operating conditions permit. Lubrication and surface treatments can reduce the amount of heat generated from friction. Some drawn cup needle roller bearings are designed without a cage, and contain a full complement of needle rollers.

 

Needle Roller Bearings Applications

Needle roller bearings are used in a variety of applications, such as radial piston pumps, autmotive steering and braking systems, power tools, transmissions, engines, valve trains, copiers, fax machines, outboard engines, and lawn trimmers.

 

Packaging & Shipping

Please contact us for more pictures of different packing.

Universal Packing

Without any logo on bearings or packing.

JDZ Packing

With our brand JDZ on bearings and packing.

Customized Packing

Depends on buyer’s requirements.

Original Brand Packing

Bearing and packing are both original. Please contact us for pictures.

 
 

QUALITY ASSURANCE

100% Quality inspection to ensure the bearings are with good quality before shipping. 

Company Profile

 

 

ZheJiang CZPT Precision Bearing Co.,Ltd. was founded by ZheJiang Defa Bearing Co.,Ltd, factory is located in ZheJiang province, China. 
We are a bearing manufacturer integrating the research, development and sales of bearings, with a floor area of 18,000 square meters and a plant area of 8,800 square meters. Equipped with modern production equipment and advanced detection instruments. 

We can provide all types bearings and OEM service according to customers’ requirements. 

Our products are widely used in the automobile, agricultural, textile production, mining, printing and packing industries, in addition to various applications at airports, in air-conditioning systems, conveying devices, ships ad so on. Our products are being exported to more than 50 countries and regions overseas including Singapore, Thailand, Iran, Turkey, Poland, Italy, England, France, Russia, Germany, the United States, Australia, Argentina, Brazil as well as other countries and regions all over the world.

We are a trusted and reliable bearing supplier, choose us to be your good partner!

Quality Inspection

 

 

Our Advantages

1.  Professional production team with advanced production equipment and testing instruments. 
2.  Many years of export experience can provide customers with better service and problem-solving capabilities.
3.  Customers all over the world enable us to better understand the market and provide customers with suitable bearings.
4.  Sincerity, cooperation, mutual and provide good quality bearings for clients are the development idea of our company
5.  Quick delivery, shipping goods on time. Save more time and cost for all customers. 

 

More choices

FAQ

1. Q: Are you trading company or manufacturer ?
   A: We have our own factory , our type is factory + trade.

2. Q: Could you accept OEM and customize?
    A: Yes, we can customize products according to your sample or drawing.

3. Q: How long is your delivery time? 
    A: If stock, within 7 days to ship or based on your order quantity.

4. Q: Could you supply sample for free? 
    A: Yes, we can offer the sample for free,do you mind to buy a “ticket” for her?

More details, please contact with us. Thanks for your time!

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Cage: With Cage
Rows Number: Single
Load Direction: Radial Bearing
Style: Without Outer Ring, With Outer Ring, Without Inner Ring, With Inner Ring
Material: Bearing Steel
Type: Open
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

cam folllow bearing

How do cam follower bearings improve the functionality of conveyors and material handling systems?

Cam follower bearings play a crucial role in improving the functionality of conveyors and material handling systems. Let’s explore in detail how cam follower bearings contribute to the efficient operation of these systems:

  • Precise Tracking and Guidance: Cam follower bearings provide precise tracking and guidance for conveyors and material handling systems. By following the profile of the cam, the bearings ensure that the moving components, such as rollers or belts, stay on the desired path. This precise tracking helps prevent misalignment, slippage, or jamming, ensuring smooth and reliable movement of materials along the conveyor or within the material handling system.
  • Smooth and Controlled Motion: Cam follower bearings enable smooth and controlled motion of conveyors and material handling systems. They transfer the rotational motion from the driving mechanism to the connected components, such as rollers or pulleys. This controlled motion allows for gentle acceleration, deceleration, and speed regulation, minimizing shocks, vibrations, and material spillage. The smooth and controlled motion enhances the overall efficiency, throughput, and safety of the system.
  • Load Support and Handling: Conveyors and material handling systems often carry significant loads, ranging from lightweight items to heavy bulk materials. Cam follower bearings are designed to provide robust load support and handling capabilities. They distribute the load evenly across the bearings, ensuring smooth and stable operation even under heavy loads. This load support feature minimizes wear and fatigue on the system components, prolonging their service life and reducing maintenance requirements.
  • Flexibility and Versatility: Cam follower bearings offer flexibility and versatility in conveyor and material handling system design. Their compact size and various mounting options allow for easy integration into different configurations, including straight, curved, or inclined conveyors. The ability to accommodate misalignments and deviations in the cam profile enables customization and adaptability to specific application requirements. This flexibility facilitates the efficient layout and optimization of conveyor and material handling systems.
  • Reduced Friction and Energy Consumption: Cam follower bearings incorporate rolling elements, such as rollers or needles, that reduce friction between the cam and the bearing. This rolling action minimizes energy losses and frictional heat generation, resulting in reduced power consumption and improved energy efficiency of the system. The reduced friction also contributes to the longevity of the bearings by minimizing wear and extending their operational life.
  • Reliability and Maintenance: Cam follower bearings are designed for reliable and low-maintenance operation in demanding industrial environments. They are constructed with durable materials and undergo stringent quality control processes to ensure their reliability. The minimal maintenance requirements of cam follower bearings help reduce downtime and increase the overall availability of conveyors and material handling systems, improving productivity and operational efficiency.

In summary, cam follower bearings enhance the functionality of conveyors and material handling systems by providing precise tracking and guidance, enabling smooth and controlled motion, supporting and handling various loads, offering flexibility in system design, reducing friction and energy consumption, and ensuring reliability with low maintenance requirements. With these benefits, cam follower bearings contribute to the efficient and reliable operation of conveyors and material handling systems, optimizing material flow, productivity, and safety in industrial environments.

cam folllow bearing

What are the signs of wear or damage in cam follower bearings, and when should they be replaced?

Cam follower bearings can exhibit signs of wear or damage over time, which may indicate the need for replacement. Let’s explore the common signs of wear or damage in these bearings and discuss when they should be replaced:

1. Increased Noise: Unusual or excessive noise during operation, such as grinding, squeaking, or rumbling sounds, can be an indication of bearing wear. If the noise becomes noticeably louder or changes in pitch, it is advisable to inspect the bearing for potential damage.

2. Abnormal Vibration: Excessive vibration or noticeable changes in vibration patterns can be a sign of bearing wear or misalignment. Excessive vibration can lead to accelerated wear and potential failure of the bearing if not addressed promptly.

3. Irregular Motion: If the cam follower bearing exhibits irregular or inconsistent motion, such as sticking, jerking, or hesitation, it may indicate wear or damage. This can affect the smooth operation of the machinery and lead to decreased efficiency or performance issues.

4. Increased Friction: If the bearing experiences higher levels of friction, it may result in increased heat generation or uneven wear. Excessive friction can lead to premature wear of the bearing surfaces and compromise the overall performance of the machinery.

5. Visible Damage: Inspect the bearing for any visible signs of damage, such as cracks, pitting, spalling, or deformation. These visual indications may suggest that the bearing has reached its operational limits and requires replacement.

6. Loss of Lubrication: Insufficient lubrication or loss of lubricant film can lead to accelerated wear and damage in cam follower bearings. If there are signs of inadequate lubrication, such as dry or discolored surfaces, it is essential to address the lubrication issue and consider replacing the bearing if necessary.

7. Excessive Play or Clearance: Excessive axial or radial play in the bearing, or an increase in the clearance between the bearing components, can indicate wear or damage. Excessive play can affect the precision of motion and compromise the overall performance of the machinery.

When to Replace Cam Follower Bearings:

The exact timing for bearing replacement depends on various factors, including the severity of wear or damage, the criticality of the application, and the manufacturer’s guidelines. However, as a general guideline, cam follower bearings should be replaced under the following circumstances:

  • When any of the above-mentioned signs of wear or damage are observed.
  • If the bearing is approaching or has exceeded its predicted service life based on the manufacturer’s recommendations.
  • When routine inspections reveal significant wear or damage that may compromise the bearing’s performance or safety.
  • During scheduled maintenance or overhaul of the machinery, as part of a proactive replacement strategy.

It is crucial to consult the manufacturer’s guidelines, maintenance manuals, or seek the advice of a qualified engineer or technician to determine the appropriate timing for cam follower bearing replacement in specific applications.

By monitoring the signs of wear or damage, and addressing them promptly, the performance, reliability, and safety of the machinery can be maintained, minimizing the risk of unexpected failures or production disruptions.

cam folllow bearing

Can you explain the design principles of cam follower bearings and their functions?

Cam follower bearings are designed based on specific principles to ensure their efficient operation and fulfill their intended functions. Understanding these design principles is essential for comprehending how cam follower bearings work and how they serve their purposes. Here, we will explain the design principles of cam follower bearings and delve into their functions:

  • Design Principles of Cam Follower Bearings:
  • The design of cam follower bearings incorporates several key principles:

    • Cam Following: Cam follower bearings are designed to follow the contour or profile of a cam accurately. This design principle enables the bearing to maintain contact with the cam’s surface throughout its motion, ensuring smooth and precise tracking. The outer diameter of the bearing, which houses the rolling elements, is designed to match the shape of the cam.
    • Rolling Element Bearings: Cam follower bearings utilize rolling elements, such as cylindrical rollers or needle rollers, to reduce friction and facilitate motion. These rolling elements are positioned between the cam’s surface and the bearing’s outer diameter. The use of rolling elements enables smooth rolling motion and reduces wear, allowing for efficient operation even at high speeds.
    • Stud or Shaft Mounting: Cam follower bearings are designed with a stud or shaft for mounting purposes. The stud is often threaded to facilitate easy installation and secure attachment to a structure or component. The stud or shaft provides the necessary support and stability for the bearing assembly, allowing it to roll along the cam’s surface.
    • Cage or Retainer: Cam follower bearings typically incorporate a cage or retainer to hold the rolling elements in place. The cage prevents the rolling elements from contacting each other, ensuring proper spacing and distribution of load. It also helps to maintain alignment and prevent the rolling elements from skewing under load, enhancing the bearing’s overall performance and longevity.
    • Sealing and Lubrication: Cam follower bearings may include sealing arrangements to protect the internal components from contaminants and retain lubrication. Seals or shields can be incorporated to prevent the ingress of dirt, moisture, or other foreign particles. Proper lubrication is crucial for reducing friction, dissipating heat, and preventing premature wear or damage to the bearing components.
  • Functions of Cam Follower Bearings:
  • The design principles of cam follower bearings enable them to perform several important functions:

    • Cam Tracking: The primary function of cam follower bearings is to accurately follow the profile of a cam. By maintaining contact with the cam’s surface, the bearing converts the rotational motion of the cam into linear or oscillating motion. This function is essential in various applications where motion needs to be translated, transformed, or guided.
    • Motion Conversion: Cam follower bearings play a crucial role in converting rotary motion into linear or oscillating motion. This function is particularly useful in mechanisms that require precise and controlled movement, such as in cam-driven systems, sliding mechanisms, or lifting devices.
    • Load Support: Cam follower bearings are designed to support high loads. They provide a stable and robust platform for carrying radial and axial loads, ensuring the smooth operation of the associated components. This function is critical in applications that involve heavy loads, such as material handling equipment, automotive systems, or machinery.
    • Motion Control: Cam follower bearings contribute to motion control by providing stability and guidance. They help regulate the speed, direction, and timing of the motion, ensuring consistent and coordinated movement. This function is essential in applications that require precise positioning, synchronization, or sequencing of components.
    • Durability and Reliability: Cam follower bearings are designed to withstand challenging operating conditions. Their robust construction, along with the use of high-quality materials, ensures durability and reliability even in demanding environments. This function is vital for applications where reliability, longevity, and minimal downtime are paramount.

In summary, the design principles of cam follower bearings revolve around accurate cam following, the use of rolling element bearings, stud or shaft mounting, cage or retainer incorporation, and sealing and lubrication arrangements. These design principles enable cam follower bearings to fulfill their functions, including cam tracking, motion conversion, load support, motion control, and providing durability and reliability in various mechanical applications.

China OEM Kr 10 Needle Track Roller Bearings Cam Follower Bolt Roller Bearing   supplierChina OEM Kr 10 Needle Track Roller Bearings Cam Follower Bolt Roller Bearing   supplier
editor by CX 2024-05-08